Artificial Intelligence Course in Karachi

Click here to add your own text

  • Data Science Play Ground
  • What is Machine Learning.
  • First Image CLassifier.
  • Data Science and Machine Learning Cheat Sheet
  • Recommender Systemt using K nearst Means
  • Data Science vs Machine Learning vs Artificial Intelligence
  • Sumarizing it all
  • AI Project Framework
  • STep-1 Problem Defination
  • Step-2 Data
  • Step-3 Evaluation.
  • Step-4 Features
  • Step-5 Modelling.
  • Step-5 Data Validation
  • Step-6 Course Correction
  • Tools needed for AI Project
  • What is Programming Language
  • Python Interpreter and First Code
  • Python 3 vs Python 2
  • Formula to Learn Coding
  • Data Types and Basic Arithmatic
  • Basic Arithmetic Part-2
  • Rule of Programming
  • Mathematical Operators and Order of Precedence
  • Variables and their BIG No No
  • Statement vs Expression
  • Augmented Assignment Operator
  • String Data Type
  • String Concatenation
  • type Conversion
  • String Formatting
  • Indexing
  • Immutability
  • Built in Function and Methods
  • Boolean Data Type
  • Exercise
  • Data Structor and Lists
  • Lists continued
  • Matrix from Lists
  • List Methods
  • Lists Methods 2
  • creating Lists Programatically
  • Dictionary
  • Dic key is Un Changeable
  • Most Used Methods on Dictionaries
  • Tuple Data Types
  • Sets data Types
  • Intro to Process of Coding-Conditionals
  • if else Statement
  • AND OR keywords
  • Boolean result of Different values
  • Logical Operators
  • Identity Operator
  • for loop and Iterables
  • Nested For loop
  • Exercise for loop
  • Range Function
  • While Loop
  • Continue Break Pass Keywords
  • Exercise Draw a Shape
  • Functions
  • Why of Functions
  • Parameter vs Argument
  • Default Parameters
  • Return Keyword
  • Doc String
  • Good Programming Practices
  • args and kwargs
  • Exercise
  • Scope of a Function
  • Scope Rules-1
  • Scope Rules-2
  • GLobal vs nonlocal Keywords
  • Programming Best Practices-2
  • Special Functions map
  • Special Functions Filter.
  • Special Functions Zip
  • Special Functions reduce
  • List Comprehension Case-1,2 and 3
  • Sets and Dictionary Comprehension
  • Python Modules
  • Python packages
  • Tools for Data Science Environment
  • Who is Mr. Conda
  • Setting Up Machine Learning Project
  • Blue Print of Machine Learning Project
  • Installing conda
  • Installing tools
  • Starting Jupyter Notebook
  • Installing for MacOS and Linux
  • Walkthrough of Jupyter notebook 1
  • Walkthrough of Jupyternotebook 2
  • Loading and Visualizing Data
  • Summing it Up
  • Tools needed
  • Pandas and What we Will cover
  • Data Frames
  • How to Import Data
  • Describing Data
  • Data Selection
  • Data Selection 2
  • Changing Data
  • Add Remove Data
  • Manipulating Data
  • What and Why of Numpy
  • Numpy Array
  • Shape of Array
  • Important Functions on Arrays
  • Creating Numpy array
  • random seed
  • Accessing Elements
  • Array Manipulation
  • Aggregations
  • mean variance and std
  • Dot Product vs Matrix Manipulation
  • Dot Product
  • Reshape and Transpose
  • Exercise
  • Comparison Operators
  • Sorting Arrays
  • Reading Images
  • matplotlib Into
  • First Plot with matplotlib
  • Methods to Plot
  • settingup Features
  • One Figure Many Plots
  • Most Used Plots Bar plot
  • Histogram
  • Four plot one figure
  • Pandas Data Frame
  • Plotting from Pandas Data Frame
  • Bar plot from Pandas Data Frame
  • pyplot vs OO methods
  • Life Cycle of OO method
  • Life Cycle of OO method Advanced
  • Customization Part-2
  • Customization Part-3
  • Figure Styling
  • Naming Entire Figure
  • What Actually ML Model is
  • Intro to Sklearn
  • Step-1 Getting Data Ready Split Data
  • Step-2 Choosing ML model
  • Step-3 Fit Model
  • Step-4 Evaluate Model
  • Step-5 Improve Model
  • Step-6 Save Model.
  • What we are going to Do
  • Step-1 Getting Data Split Data
  • Step-1 Getting Data Ready Converting Part-1
  • Getting Data Ready Converting Part-2
  • Getting Data Anatomy of Conversion
  • Getting Data Second Method of Conversion
  • Getting Data Missing Values.
  • Getting Data Missing Values method 2
  • Choosing Machine Learning Model
  • Using map to choose model
  • Step-2 How to Choose Better model
  • Choosing Model for Classification problem
  • Fit the Model
  • Running Prediction
  • Step-3 predict_proba method
  • Step-3 Running Prediction on Regression Problem
  • Step-4 Evaluating Machine Learning Model Default Scoring
  • Step-4 WHat is Cross Validation
  • Step-4 Accuracy (Classification Model)
  • Step-4 Area Under the Curve Part-1
  • Step-4 Area Under the Curve Part-2.
  • Step-4 Area Under the Curve Part-3 Plotting
  • Confusion Matrix Calculate
  • Step-4 Confusion Matrix Plot
  • Step-4 Classification Report Important concepts
  • Step-4 Classification Report Fully Explained
  • Step-4 R2 for Regression Problems
  • Step-4 Mean Absolute Error for Regression Problems
  • Step-4 Mean Square Error for Regression Problems
  • Step-4 Scoring parameters for Classification
  • Step-4 Scoring parameters for Regression
  • Step-4 Evaluation using Functions Classification
  • Step-4 Evaluation using Functions Regression
  • Step-5 Improving Model by Hyper parameters
  • Step-5 Improving Model by Hyperparameters manually
  • Step-5 Hyperparameters Task-1
  • Step-5 Evaluation Metrics in One Function
  • Step-5 Hyperparameters Comparison
  • Tunning Hyperparameters using RSCV
  • Tunning Hyperparameters using RSCV Part-2
  • Tunning Hyperparameters using GSCV
  • Results Comparison
  • Save Load Model with Pickle Method-1
  • Save Load Model with joblib Method-2

Click here to add your own text

Click here to add your own text